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The effect of non-linearity at the free surface 
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Plane potential flow past a circular cylinder beneath a free surface under gravity 
is investigated in order to determine the importance or otherwise of non-linear 
effects from the free-surface boundary condition. It is shown that non-linear 
second-order corrections to the first-order linearized expressions for the wave- 
induced forces on the cylinder are considerably larger than second-order effects 
which are present even with a linear free-surface condition. Further evidence 
for the importance of non-linearity is presented in the form of streamline plots 
of the first-order solution showing strange behaviour at wave crests. 

1. Introduction 
It is common practice for workers on mathematical water-wave problems 

associated with ships to assume that their problems, usually irrotational potential 
flows past a fixed or moving rigid body at or near a free surface under gravity, are 
linear. That is, they accept the usual approximation (Lamb 1932, p. 363) to the 
Bernoulli equation which gives a linearized free-surface boundary condition on 
a known plane surface for the velocity potential. The common justification for 
this is that the non-linear free-surface condition is so intractable that there 
appears little hope of progress unless some simplifications are made, but never- 
theless one should be quite clear under what circumstances the linearization 
process has a rational justification and should not attempt to apply it to physical 
situations where the phenomena are essentially non-linear. 

There are three important situations of relevance to ship problems when 
linearization may be given formal justification, namely : 

(A) A b i t e  body making small (strictly also slow) oscillations about a state 
of rest. There can be little argument about this case, for clearly by making the 
disturbing motion sufficiently gentle we can make the waves produced smaller 
and flatter, which are the conditions required for the validity of the linearization 
process. 

(B) A ‘small’ body in arbitrary motion at the free surface. For instance, if 
the ship looks like a vertical knife blade (a thin or ‘Michell’ ship), a formal 
successive approximation scheme can be used, an important property of which 
is that the boundary condition on the ship surface as well as that on the free 
surface must be linearized and applied on a simplified hull (in the case of a thin 
ship, on the centre plane). But here one meets with an objection from the naval 
architect who denies that he makes ships like knives, so how can it be sensible to 
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apply boundary conditions on the centre plane? The temptation then is to go 
back to the exact boundary condition on the actual ship hull but still keep the 
linearized free-surface condition, since this would retain the benefits of linearity 
while avoiding the naval architect’s objection, This procedure is inconsistent, 
however, and we should not expect it to give any better results than the first 
linearized approximation. There has, nevertheless, been some responsible con- 
sideration given to whether in numerical terms some worthwhile improvement 
in accuracy might be achieved, and one purpose of the present paper is to show 
that in a related problem this is not so. 

(C) A finite body in arbitrary motion at a submergence large compared with 
its own dimensions. Clearly in this case also the body will produce small waves 
merely because it is a relatively distant disturbance. As distinct from case (B) 
it is now correct to satisfy the boundary condition on the body exactly for the 
first approximation, since the first approximation near the body is obviously the 
flow past the body in an infinite fluid without a free surface. For the second 
approximation consistency arguments still arise, however. Is it more important 
to take account of second approximations to the Bernoulli equation at the free 
surface, or on the other hand to include modifications to the flow due to the fact 
that the singularity distribution which generates the body in an infinite fluid no 
longer does so exactly in a fluid with a linearized free surface? Both of these 
effects are of second order in the ratio body sizeldepth of submergence, and we shall 
show circumstances in which the Jirst is the more important effect. 

2. Formulation of the problem 
The problem to be discussed is of class (C), and has a long history (see Wehausen 

& Laitone, 1960, p. 574, for a list of references). Suppose we have a fixed circular 
cylinder of radius a with its centre at a depth h below the undisturbed level of the 
free surface. A stream of uniform velocity U at infinity flows past the cylinder 
normal to its axis, so that the flow is entirely two-dimensional and is described 
by a total complex potential 

Vf = U(++i@.), 

whose derivative is the complex conjugate of the flow-velocity vector. In  the 
complex z-plane ( z  = x + iy) we take the origin at the centre of the circle and the 
y axis vertically upward so that y = F, is the undisturbed free-surface level. The 
fluid flows from left to right withf+z at infinity upstream, i.e. as z-f-co. 

The disturbance to the free stream due to the presence of the cylinder causes 
waves on the free surface. If the cylinder is sufficiently deeply submerged these 
waves will be small, and we can build up the exact non-linear solution for the 
potential by solving a sequence of linear problems. As a consequence of wave 
formation there will be drag and lift forces on the cylinder even in the absence of 
viscosity and of circulation around the cylinder, and the calculation of these wave 
forces is our principal aim. Since the potential is determined as a series of terms 
which arise from linearized problems, the forces will also be found in the form of 
series, which converge, if at all, for sufficiently deep submergence. Convergent 
or not, the series may be viewed as asymptotic for large submergence, and from 
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this viewpoint we calculate only the first two terms in order to examine the 
relative importance of two contributing effects which are both formally of 
second order. 

If the acceleration due to gravity is g, then a characteristic length scale for the 
problem is U2/g (in fact this is 1/2n times the wavelength of the waves produced 
by the disturbing cylinder), and it is convenient henceforth to consider all lengths 
to be measured in units of U2/g.  In  other words, if is the original co-ordinate we 
define a non-dimensional co-ordinate z' = z(g/U2) but immediately dispense with 
the dashes. I n  these units U2/g = 1 and the waves are of length 2n. The quantities 
a and h are now also measured in terms of this length scale (e.g. now a = (actual 
radius). (g /U2))  and can in principle be of any order of magnitude except that 
a/h should be small. However, it will be convenient at a later stage to view a 
itself as a small parameter with h = O( l ) ,  this being the physical range in which 
wave effects are most important. 

@ = 0 on IzI = a ,  (2.1) 

Y = h+rl(s), (2.2) 

the boundary conditions are @ = h  (2.3) 

and 7 = * - - * l f ' ( Z ) l 2 .  (2.4) 

On the cylinder 

while on the unknown instantaneous free surface 

The linearized free-surface conditions have been given by many authors, e.g. 
Wehausen & Laitone (1960, pp. 465, 466, 471). If i t  is possible to write for the 
exact potential f an asymptotic series of the form 

f = z+fl+f,+ ..., . (2.5) 
where the terms of the series are of diminishing order of magnitude in some sense, 
then the linearized conditions are 

(2.6) 

9 ( f ; + i f 2 >  = -8 If;l"+i(f';+if;)~(fl), (2.7) 
etc., where all quantities are evaluated on the equilibrium free surface y = h. 
The corresponding approximations to the wave height are 

a(f; + if,) = 0, 

% =  - $19 

7 2  = -7k2+7% 

a(f; + if,, = P n ( 4 ,  

etc. In  general we may write for the nth approximation 

(2.10) 

where pa@) is a complicated expression involving all f,, m c n, and thus is a 
known function at the time whenf, is to be determined. In  particular 

Pl(4 = 0, (2.11) 

P2(4 = -tIf;l"+@l(fl;+if;). (2.12) 

I n  physical terms pa@) may be interpreted as the pressure distribution due to 
the first-order wave system, and the second-order flowf, is in part a flow produced 
by this pressure as a forcing agent. 

26-2 
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3. The first approximation 
The first approximation in the case of flow past a circle was given by Lamb in 

1913 (Lamb 1932, p. 410). One simply replaces the circle by the dipole potential, 
modified so as to satisfy the linearized free-surface condition 

where the k-integration contour passes over the pole at k 
represents an ordinary dipole at the centre of the circle and is 

(2.6), obtaining 

(3.1) 

= 1. Clearly a2/z  
the exact solution 

to the problem for a circle in an infinite fluid. The remaining terms, which tend 
to zero as alh tends to zero and are regular everywhere in Yz c 2h, consist 
(Havelock 1926) of an image reversed dipole above the free surface plus a trailing 
'tail ' comprising a distribution of dipoles of constant strength but sinusoidally 
varying direction along the line y = 2h, x > 0. 

By the substitutions 

u = - i ( k - l ) ( ~ - 2 i h ) ,  g = i ( ~ - 2 i h ) ,  

the integral in (3.1) may be expressed in terms of the exponential integral 

eu 
Ei-(<) = 1' du-, 

-w-iO u 

defined in the complex g plane cut along the negative real axis. The notation is 
that of Jahnke-Emde (1945); Ei-(g) has the expansion 

m Ym 
5 -  - Ei-(g) = in+y+logg+ C __ 

m=l mm! (3.3) 

in the above cut 5 plane, differing from other versions of the exponential integral 
(Jahnke-Emde 1945, p. 2) only in the presence or non-presence of the term in, 
which in the present case leads to waves behind and not in front of the obstacle. 
Thus the first approximation to the total potential is 

Numerical values for the potential or stream function are easily obtained by 
use of the series (3.3) for the exponential integral, which converges fast enough 
to enable quite a wide area of the plane to be mapped with present day computers. 
Streamlines and the first-order wave height yl from (2.8) are exhibited in figure 1 
for the case h = 2, a = 1. This is a case in which we expect that the disturbance 
produced by the circle is too severe for the potential (3.4) to be valid as the first 
term in a convergent series representing the exact potential. However, this 
extreme case is used since the two principal phenomena of interest are exag- 
gerated sufficiently to be visible and obvious; similar features occur at a reduced 
scale (or else move outside the region of physical interest) for more gentle 
disturbances. 
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The most peculiar feature of the indicated streamlines is the fact that behind 
the dipole some of them break up at wave crests into something resembling 
splashes. This demonstrates clearly the inadequacy of simple linearization for 
this severe disturbance; presumably the exact non-linear solution would involve 
highly non-sinusoidal or even breaking waves. Notice that a naive use of the 
linearized formula (2.8) for the wave height would not lead us to suspect that the 

streamlines were unreasonable. The dashed curve represents the linearized wave 
height, which is continuous and ultimately sinusoidal and is essentially distinct 
from the streamline (4  = 2-00) to which i t  is asymptotic far upstream (except 
that the two curves must touch whenever they cross the equilibrium free surface 
y = 2). The ‘splash’ phenomenon can be explained using the asymptotic form of 
the potential (3.4) far downstream (i.e. a free stream plus a linearized wave); by 
this means we can show that the streamline 4 = constant cannot cross vertical 
lines through the wave crests unless aze-ah+@ < l/47re = 0.0293, which is a condi- 
tion satisfied by only the streamline 4 = 0.34 of those plotted in figure 1. For 
smaller a or larger h the critical streamline moves upwards until eventually all 
physically interesting streamlines are continuous. 

The second important feature of figure 1 is that no closed body is generated 
by this first approximation, and in particular that the front and rear stagnation 
points are on Merent  streamlines. This would be expected from a prior know- 
ledge of the character of the second approximation, since (for instance) Havelock 
(1926) finds a contribution which can be interpreted as an oblique dipole a t  the 
Centre. That is, the dipole of the first approximation has the wrong magnitude 
and direction and cannot possibly generate a closed body in combination with 
a uniform stream. In  fact it  appears likely that at no finite order of approximation 
is a closed body generated, which may serve as a warning to those seeking to use 
inverse methods to calculate ship-like bodies generated by given source distribu- 
tions, but which need not deter us from pursuing the present direct problem 
further. 
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4. The Wehausen scheme 
Further approximations have been calculated by a number of workers, 

although with the exception of the work of Bessho (1957) the first-order free- 
surface condition (2.6) is used for all orders of approximation, leading to an incon- 
sistent linear problem. By an image method Havelock gave the second approxi- 
mation in 1928 and, in a remarkably ingenious later paper (1936), was able to 
construct a complete formal solution to the wholly linear problem. In  this paper 
he gave curves for the forces on the cylinder including contributions from approxi- 
mations up to 6th order; however, we shall show that even his 2nd approximation 
is in general less important than the non-linear contribution from the pressure 
p,(z) of equation (2.12), which is ignored by Havelock. 

Perhaps the most satisfactory way of tackling the wholly linear problem is 
that of Wehausen (Wehausen & Laitone 1960, p. 574). First let us define two 
operators which map certain classes of analytic functions onto each other. The 
‘Milne-Thomson’ operator is always applied to a function F analytic every- 
where below the (undisturbed) free surface and yields a function analytic every- 
where outside the cylinder by the formula 

A F ( z )  = P(a*/z), (4.1) 
as in the usual Milne-Thomson circle theorem (Milne-Thomson 1949, p. 149). 
Conversely the ‘Kochin’ operator LX? is always applied to a function G analytic 
everywhere outside the cylinder and yields a function analytic everywhere 
beneath the free surface by the formula 

(4.2) 
where the integral is around any closed path above the free surface which com- 
pletely encloses the image of the cylinder in the free surface. As an example, if 
G = l / z  we have by the residue theorem that 

1 Xllz = -- + 2i e-t(z--2ih) Ei-(i(z - 2ih)) (4.3) z - 2ih 

= - iqo -q , z+~ iq , za+  ..., (4.4) 

where for later use we have expanded in a Taylor series about the origin, intro- 
ducing the same coefficients qm = qm(h) as were used by Havelock (1936), namely 

m! 1 
2h 

+ . . . + - - e-2hEi-( 2h) 

These dl and .f transformations have the properties that 

F + A F  
satisfies the exact boundary condition (2.1) at the cylinder, i.e. is real on 

G + S G  IzI = a, while 



Gl = d F o  Fl = T G ,  fl = Gl+Fl 
G2 = d F l  F2 = T G ,  f2 = G2+F2 

G ,  = AYF,-~ F, = T G ,  f, = G, + F,., 

and F, + J F ,  satisfies the boundary condition on the cylinder, the sum f of the 
convergent series satisfies both the free-surface condition (2.6) and the cylinder 
condition (2.1) and is therefore the solution to the linear problem. 

We shall see that it is not strictly necessary to determine the A and X trans- 
formations completely at each stage provided it is assumed from the outset that 
a itself is a small parameter with h = O(l) ,  but nevertheless the Wehausen 
scheme represents a definite prescription for a solution to the wholly linear 
problem in any physical situation for which it is convergent, and it is capable of 
immediate extension to treat the case of non-circular cylinders. But it is also 
a simple matter to modify the scheme to take account of the pressures p&) of 
equation (2.10) and hence to treat systematically the full non-linear problem. 

Now the potential due to a pressure distribution p,(a) on the free surface is 
given by Wehausen & Laitone (1960, p. 601) in the form 

' (4.6) 

and hence if G, + X G ,  satisfies the homogeneous free-surface condition (2.6) 
then G, + X G ,  + F$) satisfies the correct nth-order inhomogeneous free-surface 
condition (2.10). That is, the Wehausen scheme may be extended to treat the 
non-linear case merely by adding Fg) to the second column, or symbolically by 
defining a modified Kochin operator X' such that 

X ' G ,  = X G ,  + F$), 

(this is only a symbolic relationship since of course F$') can only be calculated 
from a knowledge of all lower approximations, not just G, itself) and using X' 
instead of X in the scheme (4.6). 

The second column of (4.6) has a separate interpretation which is important, 
for if we define m 

P(z)  = C Fn(z), (4.8) 
n=O 

then clearly f(z) = F(z) + d F ( 2 ) .  
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But all Fn(z) are analytic everywhere below the free surface and in particular at 
the origin, and hence within some circle of convergence which includes the circle, 
we can expand F(z) in a Taylor series 

m 

m=O 
P(z) = Cmzm, (4.9) 

for some sequence Cm = Cm(a, h) of complex numbers. Thus in the neighbourhood 
of the cylinder the complete solutionf(z) can be written as 

(4.10) 

By an application of Blasius theorem to the potential in this form, Havelock 
(1936) showed that the forces on the circle are given by 

Under the conditions in which the Wehausen scheme converges we should expect 
this series for the forces to converge; in any case for small a the series consists of 
terms of decreasing order of magnitude with respect to a in the asymptotic sense. 

The problem resolves itself therefore to the determination of a sequence of 
complex co-efficients C,, each of which can be written as a series, say, 

where Cmn represents the contribution to the coefficient of zm from the approxi- 
mation Fn(z) of order n in the Wehausen scheme. The force is thus obtained as 
a doubly-infinite series; under the assumption that a is small it  may be re-ordered 
into a single series of decreasing terms as given by Havelock (1936) for the linear 
case. We may note on inspection of Havelock’s result, however, that while the 
series has the appearance of being ordered with respect to small a and was indeed 
derived upon that assumption, the coefficients are functions of h of such a 
character that the series is actually ordered with respect to the combination a2/h. 
That is, Havelock has achieved a little more than he set out to, since a series 
derived upon the assumption that a is small with h = O( 1 )  has turned out to be 
valid also if h is large. We should not expect that the inclusion of non-linear 
effects would disturb this qualitative conclusion, since clearly the larger h is 
(even for a fixed value of a)  the more gentle will be the waves and the less impor- 
tant the non-linearity. Hence in the following section we carry through the 
analysis systematically for the case a small, h = O( l ) ,  but expect the theory to 
be valid also under some circumstances when h is large. 
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5. Expansion with a as small parameter 
Now if we proceed step by step through the modified Wehausen scheme (4.6) 

we find successively 

Go = 0, Fo = Z, fo = Z, 

GI = d / Z ,  Fl = X(a2/z)  + Fp) = a2X(  I/Z) 

+ 2i e-2h-gz Ei-(2h + iz) , 1 =.2(-- 1 
z - 2ih 

+ 2i e--2h-iz Ei-( 2h + iz) 1 
fl = aZ/z + a2 - - ( z - 2ih 

which is the first approximation (3.1) of Lamb. 
Now according to the full Wehausen scheme we should at this stage compute 

Gz(z) = d F l ( z )  = Fl(a2/z) and take its Kochin transform in full. However, the 
Wehausen scheme in its full generality is not needed here since we know that a is 
small, so that the whole analysis may be carried out in the small region z = O(a). 
Hence it suffices in the Wehausen scheme to use for Fl the first non-constant term 
in its Taylor series (constant terms may of course always be ignored without loss 
of generality). Hence from (4.4) 

(5.2) F~(z) = - aZq1z + O(a2z2), 

with the error term being O(a4) as long as z = O(a). 

Now (5.3) 

and XGZ = - a4q1 X (  112) + O(a ‘X(  11.9)). 

But by differentation of 
X ( l / z )  = - q  lz+&iq2z2+. . . ,  

we have X ( 1 / 2 2 )  = -ip2z+...; 

(it is easy to prove from (4.2) that X and d/dz commute). Therefore 

S G ,  = a4& - +ia4qlqZz2+ O(a7). (5.4) 

In  order to find Fz we must add to X G 2  the pressure term 

dsp2(s) e-i(z-ih-s)Ei-(i(z - ih - 8)). (5.5) 

Since fl is proportional to u2 and pz (x )  is quadratic infl, J’p) is proportional to a4 

(5.6) 

for some Taylor coefficients yn = y,(h). In  particular the only coefficient we 
shall need to use is 

pp = - _  :/Irn 
and we may write m 

Pip(Z) = a4 c GP, 
m=O m! 
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From the definition (2.12) ofp2(z) and the value (3.1) of fi, we can obtain for the 
pressure 

2i + 2 e-h-fx Ei-(h + ix )  +---7-+- 

1 1 
a4 ( X - % h ) 2  z-ih 

+ 2i e-h--i2 Ei-(h + iz) 
1 --__ 

z+ih 2- ih  
(5.8) 

Using again the series representation (3.3) of the exponential integral this 
apparently complicated expression may be evaluated easily on a computer, and 
examples of the pressures for the cases h = 1 and h = 4 (Froude numbers h-4 of 
1 and 4 respectively, based on depth) are shown in figure 2. Notice that in spite 
4 
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FIGURE 2. “he pressure distribution on the free surface obtained from the 
first-order linearized flow. 

of the fact that i t  is the pressure due to the first-order waves, p2(z)  is not itself 
sinusoidal far downstream; its oscillations decay (slowly) and p 2  tends to a 
constant value.? Notice also how much smaller is the pressure at h = 4 than at  
h = 1 (the scales differ by a factor of 100) confirming that the non-linear effects 
tend to zero quite strongly as h +oo as well as when a + 0. Another way of 
expressing this fact is the physically obvious statement that at constant depth 
the wave height increases very rapidly with increasing speed. 

t This constant value is exactly of the right magnitude to balance the ‘D.C.’ part of 
the term 7; in the formula (2.9) for the second-order wave height, leaving a pure second- 
harmonic wave. 
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The real and imaginary parts of yz may now be found by numerical integration 
of equation (5.7). In  performing this integration one need not be too concerned 
about curtailing the infinite range of integration; since it is easy to see that the 
integrand tends to zero rapidly at both ends of the range. Physically y2 represents 
a disturbance velocity at the (small) cylinder due to the pressure p2(z ) ;  regions 
far ahead of the cylinder contribute little because there are no waves and hence 
small pressure, while regions far behind the cylinder contribute little because the 
disturbance due to the waves is mainly propagated downstream and not back 
upstream to the cylinder. 

Now we have F2 = .XG2+FP)  

= a4(q2, + yl)z + $a4( - iqlq2 + yz)z2 + . . . . (5.9) 

This is as far as we need go in the Wehausen scheme except to observe that 
continuing one cycle further would give 

Fa = O(a~)z+O(a~)22+ .... (5.10) 

Thus F(z )  = z 

+ &a2iq2z2 + 5 O(a2)zm 
3 

- a % l Z  

+ ~ 4 ( q ;  + z + 4 4  - iqlq2 + yz)  22 + x o(a4) 
W 

3 
W + x O(a6) P, 
1 

giving the following expressions for the coefficients C, of equation (4.9): 

cl = 1 -a2ql+0(a4), 

c2 = 4 W q 2  - a2(q,q, + iY2)) + O(a9, 
c, = O(a2) (m 2 2). 

Hence the forces on the cylinder follow from equation (4.11) as 

x F - ~ Y F  = 2nipa4~2[ ( l -a~ l+o(a4) )  (qz-a2(qlqE+iyz) +0(a4)) +0(a4)1 

= 2nipa4U2[q,-a2(q1q,+~,q,+iy,) +O(a4)]. (5.11) 

Separately the X- and Y-forces are thus: 

(6.12) 

(6.13) 

The left-hand sides of equations (5.12) and (5.13) represent the forces divided by 
the buoyancy, pgna2, of the cylinder per unit length (since in our units Ua = g )  
so that the right-hand sides are the quantities plotted by Havelock. Except for 
the terms in y2, (5.12) and (5.13) are identical with Havelock's (1936, p. 632) 
equations (29) and (30) carried as far as the 2nd approximation; Havelock's 
equations in fact go as far as the 6th approximation for the linear problem. 
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Bessho (1957) carried through an analysis of the second-order non-linear 
potential with results (for the potential) not inconsistent with ours. However, 
he then obtained the forces by use of a formula of Havelock involving the wave 
amplitude far downstream, instead of by Blasius theorem as used here. Since 
Havelock’s formula is only valid in the linearized approximation, Bessho was led 
to an erroneous conclusion that, although non-linearity does affect the potential 
at second order, it only enters the forces a t  third order. The correct result could 
be obtained from Bessho’s potential by sufficiently careful consideration of 
energy radiation to infinity, taking account of second-harmonic contributions, 
but it appears easier to proceed via Blasius theorem. 

Since we are now able to compute the real and imaginary parts of the non-linear 
contribution yz, it  is possible to compare the relative importance of the two 
second-order effects. Notice that since the q’s and y’s are not functions of a, this 
comparison is independent of the value or even the order of magnitude of a and 
is only affected by the value of h. Clearly a determines how important second- 
order effects are as a whole and how fast (if at all) the series begun by (5.12) and 
(5.13) converge, but does not affect the relative importance of the two second- 
order effects. In  figures 3 and 4 we plot (1) the fist approximations obtained by 
using the fist terms only, (2) the Havelock second approximation consisting of 
the f i s t  two terms in equations (5.12), (5.13), and finally (3) the complete second- 
order forces, for the case a/h = &. 
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It must be emphasized that we do not pretend that, for such a severe disturb- 
ance, any of the curves in figures 3 and 4 give good approximations to the wave 
forces on the cylinder-much less that they are directly relevant to the real 
physical problem of flow past a cylinder, for which even the exact potential 
theory is a poor model. Our purpose is simply to show how the non-linear 
second-order effect dominates the linear second-order effect over the complete 

FIUURE 4. 

range of speeds, and this can be shown most clearly by presenting a case in which 
both second-order effects are large. However, for comparison we also give in 
figure 5 the horizontal force for the less severe case a/h = a where second-order 
effects are smaller and we should hope that the full second-order curve is a good 
approximation to the true wave resistance. From (5.12) it  is clear that, at any 
fixed abscissa, the ratio [(3)-(2)]/[(2)-(1)] is the same in figures 3 and 5; that is, 
as explained above, the relative importance of the two second-order effects is 
independent of the severity of the disturbance. 

The curves show clearly that, by a factor of at least 2 or 3 in the range of 
Froude numbers where wave-making is significant, it is more important to correct 
for non-linearity at the free surface than for the fact that the boundary condition 
is not satisfied exactly by the first approximation on the body.surface. It is 
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tempting to generalize this argument to a wider range of water-wave problems, 
with the conclusion that much of present-day effort towards theoretical predic- 
tion of ship behaviour is mis-directed, but this temptation should be resisted. 
The argument only applies with certainty to the class of steady two-dimensional 
deep-submergence problems considered here, or perhaps (with a little less 
certainty-it would be interesting to repeat the present analysis for (say) a 
submerged sphere to check this) to the whole class of problems labelled (C) in the 
introduction. The extension to problems of class (B) is Iess certain, but this paper 
may serve as a warning that non-linear effects can be at least as important as 
other inaccuracies in the standard theoretical procedures for solving water-wave 
problems involving flows past rigid bodies. 
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